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Diabetes is an increasingly common complication of pregnancy. In parallel with this trend, a rise in
chronic lung disease in children has been observed in recent decades. While several adverse health
outcomes associated with exposure to diabetes in utero have been documented in epidemiological and
experimental studies, few have examined the impact of diabetes in pregnancy on offspring lung health
and respiratory disease. We provide a comprehensive overview of current literature on this topic, finding
suggestive evidence that exposure to diabetes in utero may have adverse effects on lung development.
Delayed lung maturation and increased risk of respiratory distress syndrome have been consistently
observed among infants born to mothers with diabetes and these findings are also observed in some
rodent models of diabetes in pregnancy. Further research is needed to confirm and characterize
epidemiologic observations that diabetes in pregnancy may predispose offspring to childhood wheezing
illness and asthma. Parallel translational studies in human pregnancy cohorts and experimental models
are needed to explore the role of fetal programming and other potential biological mechanisms in this
context.

© 2016 Elsevier Ltd. All rights reserved.

INTRODUCTION

with important implications for chronic lung disease later in life
[1]. Diabetes in pregnancy has long been associated with adverse

Respiratory health is influenced by intrinsic and extrinsic
environmental stressors during fetal and postnatal development,
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maternal and neonatal outcomes and has recently emerged as an
important trigger for the fetal programming of lifelong metabolic
and cardiovascular health outcomes in offspring [2]. These clinical
observations have been confirmed in rodent models, which have
further identified specific alterations in gene expression among
offspring exposed to diabetes in utero (reviewed in [2]). While the
majority of this research has focused on short-term maternal and
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neonatal health outcomes, or long-term metabolic and cardiovas-
cular consequences in offspring, there is a growing body of
evidence suggesting an impact of diabetes in pregnancy on
offspring lung development and respiratory health. We provide
an overview of this literature and identify key knowledge gaps
requiring additional research.

Maternal diabetes in pregnancy

Diabetes affects a rising proportion of pregnancies worldwide,
including up to 10% in the United States [3]. Dysregulation of
glycemic control during pregnancy is associated with numerous
adverse maternal and neonatal outcomes, including preeclampsia,
preterm birth, macrosomia and stillbirth [4]. Since the risk of harm
for offspring increases with the duration and extent of hypergly-
cemia exposure, it is important to distinguish pre-gestational
diabetes (type 1 diabetes (T1D) or type 2 diabetes (T2D) diagnosed
prior to pregnancy) from gestational diabetes mellitus (GDM),
defined as fasting or post-prandial hyperglycemia first detected
during pregnancy [2]. T1D is characterized by hyperglycemia due
to an absolute deficiency of insulin production, whereas hyper-
glycemia in T2D and GDM is associated with both insulin
resistance (in hepatic and/or peripheral tissues) and insufficient
insulin secretion to maintain euglycemia [3].

There is convincing evidence that exposure to diabetes earlier in
pregnancy (i.e. exposure to pre-gestational diabetes) carries the
most severe health consequences for the offspring [4], but the
distinction between pre-gestational diabetes and true GDM is rarely
made in respiratory health studies. Currently the standard screening
protocol to detect diabetes in pregnancy is an oral glucose challenge
test between 24 and 28 weeks of gestation, which would not
distinguish between GDM and undiagnosed pre-gestational T2D
[5]. Moreover, most health registries used in longitudinal research
do not reliably distinguish between types of diabetes.
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Fetal lung development

Fetal lung development occurs in five stages (Figure 1),
beginning with tracheal separation from the esophagus in the
embryonic stage at 3 weeks of gestation and ending with the
development of mature alveoli in the alveolarization stage, which
occurs following birth and extends into early childhood [6]. The
intermediate stages (pseudoglandular, canalicular, and saccular)
encompass the development of the branched airway structure,
epithelial lined sacs that become alveoli, and various layers of the
airway and pulmonary vasculature walls [7]. In addition, surfac-
tant production begins at 24 weeks of gestation and continues until
birth. Surfactant is a complex mixture of phospholipids and
proteins that act to reduce surface tension in the alveoli and
prevent alveolar collapse during expiration [8]. Environmental
exposures throughout gestation and postnatally can therefore
have significant and distinct impacts on lung development and
future health. Extensive research has been undertaken to establish
how maternal nutrition [9], smoking [10], and exposure to air
pollution [11] influence lung development and respiratory health;
however, much less is known about how diabetes in pregnancy
affects fetal lung development and subsequent respiratory health
in the offspring.

DIABETES IN PREGNANCY AND NEONATAL RESPIRATORY
OUTCOMES

Respiratory Distress Syndrome

Respiratory distress syndrome (RDS) is an important cause of
neonatal morbidity, affecting 40 000 infants each year in the US
[12]. RDS is characterized by a lack of functional surfactant in the

neonatal lung, resulting in collapse of the terminal air spaces.
Treatment involves ventilation and oxygen therapy which can
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Figure 1. Diabetes in pregnancy and lung health in offspring. Timeline of human and mouse lung development overlapping with in utero exposure to maternal pre-
gestational or gestational diabetes, and potential respiratory outcomes at birth and during early childhood. E=embryonic; PN=postnatal.
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Table 1

Summary of human studies reporting associations of diabetes in pregnancy respiratory outcomes in neonates.

CI, confidence interval; GDM, gestational diabetes mellitus; HR, hazard ratio; OR, odds ratio; RR, relative risk; VLBW, very low birthweight.

damage the epithelium, resulting in plasma leakage into the
collapsed airspaces and formation of a fibrin-rich hyaline
membrane that further damages the tissue [13]. Infants who are
treated for RDS, and especially those who suffer damage from the
treatment, are more likely to develop asthma [14], putting them at
increased risk for lifelong chronic lung disease.

Preterm birth is the strongest risk factor for RDS [15], and
women with pre-gestational diabetes or GDM are more likely to
deliver preterm [16,17]. Additionally, diabetes in pregnancy may
be an independent risk factor for RDS (Table 1). A 1976 cohort
study by Robert et al. including over 10 000 US children reported a
23.4% incidence of RDS among infants born to women with
diabetes in pregnancy, compared to 1.3% among their counterparts
without diabetes [18]. This association persisted after controlling
for gestational age at birth and additional confounders (relative
risk (RR) 5.6, p <0.0001), although no distinction was made
between pre-gestational diabetes and GDM. More recent studies
reveal that RDS risk is particularly elevated following exposure to
pre-gestational [19] or insulin-treated [20] diabetes in pregnancy.
However, this is not a universal finding as two studies in very low
birthweight infants found no association between diabetes in
pregnancy and RDS [21,22]. These conflicting results may be due to
differences in gestational age, mode of delivery, maternal blood
glucose control, prenatal steroid use, or RDS definitions between
studies.

The mechanism by which diabetes in pregnancy could increase
the risk for RDS is related to the composition and integrity of

pulmonary surfactant in the developing fetus. Specifically,
expression of surfactant proteins B and C in epithelial cell culture
is inhibited by insulin [23,24], which is commonly elevated among
neonates exposed to hyperglycemia during pregnancy [25]. In
addition, pregnancy complicated by diabetes is associated with
delayed appearance of phosphatidylglycerol, a major lipid
component of surfactant and an important marker of fetal lung
maturity [26]. A study evaluating glycemic control in 621 mothers
with diabetes found that smaller gestational age at birth and poor
maternal glycemic control independently predicted the delayed
appearance of phosphatidylglycerol within neonatal surfactant
[27]. Another study found that well-controlled diabetes in
pregnancy (T1D or GDM) does not delay fetal lung maturity
[28], emphasizing the importance of maternal glycemic control for
maintaining normal fetal lung development.

Bronchopulmonary Dysplasia

Bronchopulmonary Dysplasia (BPD) is a chronic lung condition
characterized by thin alveoli septa and interstitial thickening that
can result from extended ventilator use in preterm infants, often
for the treatment of RDS. Despite the association of diabetes in
pregnancy with preterm birth and RDS (described above), a
Swedish study of over 100 000 preterm infants by Eriksson et al.
found that both pre-gestational diabetes and GDM were associated
with reduced risks of BPD (odds ratio (OR) for pre-gestational
diabetes: 0.64; 95% confidence interval (95%CI) 0.42-0.97; OR for
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GDM 0.36; 95%CI 0.20-0.65) [29]. This counterintuitive protective
association was not explained by insulin use among mothers with
diabetes, or higher birthweight for gestational age among their
infants. Prenatal steroid use was not considered. The authors
speculated that diabetes in pregnancy might initiate fetal stress
reactions and increase endogenous corticosteroid levels, thus
promoting lung maturation in the newborn infant. Bental and
colleagues’ study of very low birthweight infants in Israel also
found a small reduction in BPD risk among infants born to mothers
with GDM or pre-gestational diabetes (19.9% vs. 24.5%, p = 0.002);
however, this association was not significant after adjusting for
confounders (OR 1.00; 95%CI 0.81-1.25). They concluded that the
apparent protective association was due to increased use of
prenatal steroids among mothers with diabetes, and increased
birthweight among their infants [30]. Similarly, a matched double-
cohort study in very low birthweight Canadian infants by Rehan
et al. found no association between diabetes in pregnancy and BPD
[22], and a study of nearly 12 000 very low birthweight infants
across six South American countries found no significant associa-
tion after adjusting for birthweight, prenatal steroids, and other
confounders (OR 1.20; 95%CI 0.91-1.58) [21]. Therefore, current
evidence does not generally support an independent association
between diabetes in pregnancy and BPD in offspring.

Congenital Diaphragmatic Hernia

Congenital Diaphragmatic Hernia (CDH) is a rare birth defect in
which the diaphragm fails to fully develop, allowing the contents
of the abdomen to enter the chest cavity. This disease is associated
with severely underdeveloped (hypoplastic) lungs, the latter effect
occurring independently of diaphragm abnormalities [31]. Chil-
dren born with CDH surviving surgical repair carry chronic lung
defects including increased parenchymal elastance and reduced
diffusing capacity, which severely compromises their respiratory
health and quality of life. In a cohort study of 492 infants with CDH
and 4900 controls, maternal pre-gestational diabetes was strongly
associated with CDH (OR 12.53; 95%CI: 2.40-65.43) [32]. A similar
association was found by Correa et al. in a larger study of
17 000 infants (OR 4.70, 95%CI: 1.02-21.60) [33]. These studies did
not distinguish between T1D and T2D or evaluate the possible
impact of GDM. The underlying mechanism for this association has
not been studied directly, but the authors hypothesized that it may
involve dysregulation of genes responsible for apoptosis and

Table 2
Summary of human studies reporting associations of diabetes in pregnancy and respiratory outcomes in infants and children.

organogenesis during fetal development, suggesting an association
between maternal metabolic health and development of lung-
associated abnormalities in CDH [32].

DIABETES IN PREGNANCY AND RESPIRATORY OUTCOMES IN
INFANCY AND CHILDHOOD

Wheezing

Wheezing is common during infancy and early childhood, with
20% to 50% of infants experiencing at least one episode in the first
year of life across different settings [34,35]. A recent pooled
analysis of individual participant data from 14 European birth
cohorts (n=85 509) found that diabetes in pregnancy (pre-
gestational diabetes, GDM, and glucose intolerance in pregnancy)
was not associated with parent-reported wheezing in offspring
from birth to 24 months of age [36] (Table 2). Specifically, after
adjusting for confounders (e.g. maternal smoking, education, and
asthma) and other pregnancy complications (overweight/obesity
and hypertensive disorders), the authors found no consistent
association between diabetes in pregnancy and “ever wheezing”
(Relative Risk (RR) 1.04; 95% C10.97-1.13) or “recurrent wheezing”
(RR 1.24; 95% CI 0.86-1.79). However, there was evidence of
heterogeneity across cohorts (p=0.03), which the authors
attributed to variations in diagnostic criteria, screening policies
and actual prevalence of diabetes in pregnancy between countries.

In a cross-sectional study of over 15 000 Italian children,
Rusconi et al. evaluated persistent wheezing later in childhood
(age 6-7 years) and found a significant association with diabetes in
pregnancy [37]. Children born to a mother with GDM or pre-
gestational diabetes were significantly more likely to have
persistent wheezing by school age (OR 1.84; 95% CI: 1.06-3.20),
after adjustment for low birthweight, socioeconomic status,
maternal age and smoking, and other confounders. These findings
could signal long-term respiratory consequences of exposure to
diabetes in utero, since we and others have found that wheezing in
early childhood predicts significantly reduced lung function and
increased asthma risk in adolescence [38,39].

Asthma

Asthma is the most common chronic disease of childhood,
affecting 9.3% of American children [40] and costing over

CI, confidence interval; GDM, gestational diabetes mellitus; HR, hazard ratio; IRR, incidence rate ratio; OR, odds ratio; RR, relative risk.
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$56 billion annually in the United States alone [41]. International
reports have estimated asthma prevalence at 14% among 6-14 year
old children worldwide [42]. The developmental origins of asthma
have been intensely studied since prevention is regarded as the
best approach to managing the health and economic burden
associated with this disease. However, only four studies have
specifically investigated the association between diabetes in
pregnancy and childhood asthma [43-46] (Table 2). All found a
positive association, although none distinguished between GDM
and pre-gestational diabetes.

In the smallest cohort study by Risnes et al. (n=1401 US
children) [45], diabetes in pregnancy was associated with a three-
fold increased risk of physician-diagnosed asthma by 6 years of age
(OR 3.63; 95% CI 1.46-9.04); however, this estimate was not
adjusted for any confounders since diabetes in pregnancy was not
the primary exposure of interest in this study. A significant but
more modest association was reported by Aspberg et al. in a large
population-based registry study of over 1 million Swedish children
[44], in which the odds of hospitalization for asthma was 19%
higher among children exposed to diabetes in pregnancy (OR 1.19;
95% CI: 1.12-1.28) after adjustment for maternal age, parity,
smoking, and other confounders. Similarly, in a national Finnish
database study of 1.2 million children [46], Haataja et al. found that
moderately preterm infants [32 -34 weeks gestational age at birth]
exposed to diabetes in pregnancy were at increased risk of
physician-diagnosed asthma by 7 years old [hazard ratio (HR] 1.62,
95% CI: 1.02-2.58), independent of many confounders including
delivery mode, maternal age, antenatal steroids, and maternal
smoking. This relationship was not found for other preterm infants,
and although it was nearly significant in term infants, the effect
was small [HR 1.09; 95%CI 0.99-1.21].

We performed a cross-sectional study in 3574 Canadian school-
aged children [43], finding that those with parent-reported asthma
were more likely to have mothers (2.9 vs 1.2%, p = 0.003) but not
fathers (1.4 vs 1.3%, p=0.89) with diabetes. This finding is
consistent with the fetal programming hypothesis [47], suggesting
that a hyperglycemic intrauterine environment increases the risk
for asthma in childhood. Interestingly, our study further showed
that diabetes in pregnancy did not confer a strong independent risk
for asthma; rather, this exposure amplified the effects of maternal
asthma and environmental tobacco smoke (ETS). For example,
diabetes in pregnancy increased the ETS-associated risk for asthma
from 1.4-fold (OR 1.40; 95%CI 1.13-1.73) to 5.7-fold (OR 5.68;
95%Cl 1.18-27.36; P for interaction=0.08). Based on these
findings, we proposed that fetal hypoxia and immune dysregula-
tion may be synergistically amplified in pregnancies complicated
by diabetes in combination with maternal asthma or ETS exposure,
leading to a markedly elevated risk of asthma in offspring
[43]. Both fetal hypoxia and immune dysregulation are established
mechanisms for asthma development [48,49] and they have been
independently linked to diabetes in pregnancy [50,51]. Others
have framed asthma as an autoimmune disease arising from
immunological disturbances that are imprinted during fetal life
[44], perhaps involving factors common to T1D, which is also an
autoimmune disorder. However, these postulated mechanisms
and interactions remain to be replicated in other cohorts and
proven in experimental models.

Other respiratory issues

Kumar et al. found that GDM increased the risk of allergic
sensitization by 3 years of age in full term (OR 6.05; 95%CI 1.17-
31.18), but not preterm (OR 0.33; 95%CI 0.07-1.60) offspring
[52]. These effects were independent of family history, infant sex,
maternal BMI, race and education, breastfeeding, peripartum
antibiotic use, and c-section delivery. These findings may be

relevant to respiratory health since allergic sensitization by 2 years
of age is a strong risk factor for wheezing throughout childhood
[38,53]. The authors speculated that the lack of association in
preterm infants might be due to the shorter exposure to
hyperglycemia in GDM.

EVIDENCE FROM ANIMAL MODELS

The epidemiologic studies described above provide intriguing
observational evidence that exposure to diabetes in utero may be
associated with impaired lung development and poor respiratory
health. However, human studies are limited in their ability to
characterize gestational exposures, control for confounding
factors, perform lifelong follow up, and study biological mecha-
nisms. These limitations can be addressed in animal models, which
allow precise control of environmental factors and detailed
mechanistic studies to provide insight into the human condition.
Similar to humans, rodent lung development begins with the
origination of lung buds, lobular division, airway branching and
bronchiolar development during gestation, and continues postna-
tally with secondary septation and expansion of the number and
size of capillaries and alveoli [54] (Figure 1). In contrast to humans
where alveolar duct and air sac development occurs entirely in
utero, this process continues for several days after birth in mice.
Keeping this difference in mind, rodents provide a useful and
appropriate model for human lung development.

Rodent models of pre-gestational diabetes and GDM

Several rodent systems have been developed to model T1D, T2D
and GDM using drug administration, genetic modification, and
dietary interventions. Notably, these methods and the resulting
hyperglycemia can impact fertility, presenting specific challenges
for studies of pregnancy.

The most commonly used rodent model of diabetes in
pregnancy is streptozotocin or alloxan administration prior to
pregnancy to extinguish the insulin secretion capacity of
pancreatic beta cells, thus inducing T1D [55]. Genetic models
include the non-obese diabetic (NOD) mouse and the bio-breeding
(BB) rat that spontaneously develop T1D via autoimmune attack,
much like human T1D [56]. Established genetic models of T2D
include the leptin-deficient ob/ob mouse and the leptin-resistant
db/db mouse; however, these are not useful models of T2D in
pregnancy since these homozygous mice are infertile [55]. Several
approaches have been used to model GDM. In db/+ or ob/+
heterozygotes, GDM occurs spontaneously when partial leptin
deficiency is combined with the added metabolic stress of
pregnancy [57]. Alternatively, high fat or high carbohydrate
diet-induced models can provide the necessary ‘“pre-diabetic”
conditions that will result in spontaneous GDM [2,55]. Diet-
induced models have the benefits of avoiding genetic manipula-
tions or drug-induced teratogenic effects, providing an ideal model
to evaluate dietary interventions for GDM prevention and
treatment.

Lung development in rodent models of diabetes in pregnancy

The above models of diabetes in pregnancy have been utilized
extensively to study the programming of metabolic and cardio-
vascular health in the offspring (reviewed in [2]); however,
relatively few studies have been performed to assess lung
development in these model systems (Table 3).

Consistent with human studies (Section 2.1), delayed pneu-
mocyte differentiation [58] and lung maturation [59-61] have
been observed in rodent models of diabetes during pregnancy,
including streptozotocin-induced T1D [60], genetic T1D in BB rats
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Table 3
Summary of evidence from animal models linking maternal diabetes in pregnancy with fetal lung development and lung health in offspring.

[61], and obesity-associated GDM in db/+ mice [59]. Reduced
content and synthesis of surfactant phospholipids [62-64] and
surfactant proteins [65] have also been observed in neonatal rats
born to dams with streptozotocin-induced T1D. Evidence from the
db/+ model of GDM suggests that these surfactant defects occur as
a consequence of dysregulated phospholipid synthesis or metabo-
lism in the developing fetus [59]. Consistent with clinical evidence
[4], more severe abnormalities are observed in rodent offspring
when exposure to diabetes is experienced early during embryonic
organogenesis versus later in fetal development [55]. Further
studies using rodent models are required to fully characterize the
molecular mechanisms linking diabetes in pregnancy to impaired
surfactant levels and lung development in the offspring.

Chronic respiratory disease in rodent offspring exposed to diabetes in
pregnancy

There is a paucity of studies using animal models to directly
investigate chronic respiratory disease following exposure to
diabetes during fetal development. Since an association is apparent
in epidemiologic studies (Section 3), there is a need to explore the
underlying mechanisms that may link diabetes in pregnancy with
chronic lung disease in experimental models. There is an
established link between maternal hyperglycemia and placental
inflammation, which could lead to impaired fetal lung develop-
ment and higher risk for inflammatory disorders later in life
[66]. Indeed, dysregulated prostaglandin signalling has been linked
to delayed fetal lung maturation in streptozotocin-treated mice
[67] and alloxan-treated rabbits [68]. While these models of T1D
provide a good starting point for analyzing the impact of diabetes
in pregnancy on lung health in offspring, GDM and pre-gestational
T2D are more prevalent than T1D in clinical settings. Diet-induced
models of T2D and GDM [2] will therefore be particularly helpful in
determining the mechanisms by which exposure to diabetes
in utero influences the development of chronic lung disease.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Diabetes is an increasingly common complication of pregnancy
[3] and a parallel rise in chronic lung disease has been observed in
recent decades [69]. While the adverse metabolic consequences of
exposure to diabetes in utero have been repeatedly documented in
clinical and experimental studies [2], few have examined the
potential impact of diabetes in pregnancy on lung health and
respiratory disease in the offspring. From the limited literature on
this topic, there is suggestive evidence of a clinically important
association. Delayed lung maturation and increased risk of RDS
have been consistently observed among infants born to mothers

with diabetes and these findings are recapitulated in rodent models
of diabetes in pregnancy. Further research is needed to confirm and
characterize observations that diabetes in pregnancy may predis-
pose offspring to wheezing illness and childhood asthma, as the vast
majority of these studies have been retrospective and none have
distinguished between pre-gestational diabetes and GDM.

Long-term epidemiologic studies will be particularly valuable
for establishing lifecourse implications of diabetes in pregnancy on
lung health, as no study to date has investigated these associations
beyond early adolescence. All future studies should clearly
distinguish between GDM and pre-gestational T1D or T2D, since
research to date clearly demonstrates that “diabetes in pregnancy”
is not a homogeneous exposure. Rodent studies in appropriate
models of diabetes in pregnancy will be essential for identifying
biological mechanisms. In particular, parallel studies in human
pregnancy cohorts and experimental models are needed to explore
the role of fetal programming in this context.

DIRECTIONS FOR FUTURE RESEARCH

e Long-term follow up studies monitoring respiratory health of
children exposed to diabetes in utero are needed, since no studies
to date have evaluated this association beyond early adoles-
cence.

e Epidemiologic associations between diabetes in pregnancy and
lung health in offspring should be replicated and studied in
rodent models, where molecular mechanisms can be investigat-
ed in detail in order to inform new treatments and prevention
strategies.

o All studies should clearly distinguish between pre-gestational
(type 1 or type 2) and gestational diabetes arising in pregnancy
since these exposures are not equivalent.
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