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Abstract

Background Obesity often originates in early life, and is linked to excess sugar intake. Nonnutritive sweeteners (NNS) are
widely consumed as “healthier” alternatives to sugar, yet recent evidence suggests NNS may adversely influence weight gain
and metabolic health. The impact of NNS during critical periods of early development has rarely been studied. We
investigated the effect of prenatal NNS exposure on postnatal adiposity and adipocyte development.

Methods In the CHILD birth cohort (N =2298), we assessed maternal NNS beverage intake during pregnancy and child
body composition at 3 years, controlling for maternal BMI and other potential confounders. To investigate causal
mechanisms, we fed NNS to pregnant C57BL6J mice at doses relevant to human consumption (42 mg/kg/day aspartame or
6.3 mg/kg/day sucralose), and assessed offspring until 12 weeks of age for: body weight, adiposity, adipose tissue mor-
phology and gene expression, glucose and insulin tolerance. We also studied the effect of sucralose on lipid accumulation
and gene expression in cultured 3T3-L1 pre-adipocyte cells.

Results In the CHILD cohort, children born to mothers who regularly consumed NNS beverages had elevated body mass
index (mean z-score difference +0.23, 95% CI 0.05-0.42 for daily vs. no consumption, adjusted for maternal BMI). In mice,
maternal NNS caused elevated body weight, adiposity, and insulin resistance in offspring, especially in males (e.g., 47% and
15% increase in body fat for aspartame and sucralose vs. controls, p <0.001). In cultured adipocytes, sucralose exposure at
early stages of differentiation caused increased lipid accumulation and expression of adipocyte differentiation genes (e.g., C/
EBP-a, FABP4, and FASN). These genes were also upregulated in adipose tissue of male mouse offspring born to sucralose-
fed dams.

Conclusion By triangulating evidence from humans, mice, and cultured adipocytes, this study provides new evidence that
maternal NNS consumption during pregnancy may program obesity risk in offspring through effects on adiposity and
adipocyte differentiation.

Introduction

Globally, over 20% of children are overweight or obese [1].
Mounting evidence shows that obesity originates early in
life, perhaps even in utero. The Developmental Origins of
Health and Disease hypothesis postulates that prenatal and
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Excess energy intake from sugar, especially sugar-
sweetened beverages, is strongly associated with obesity
[8—11]. Sugar substitutes or ‘“nonnutritive sweeteners”
(NNS) including aspartame and sucralose are marketed as
healthier alternatives [12, 13]. NNS are widely consumed,
including by pregnant women. Almost 30% of mothers in
the Canadian CHILD cohort consumed NNS during preg-
nancy [14], and similar rates have been reported in the USA
(24%) [15] and Denmark (45%) [16]. Contrary to their
intended benefits, NNS have been inconsistently associated
with metabolic derangements and adverse effects on cardi-
ometabolic health in adults [17-19] and children [20];
however, few studies have investigated NNS exposure in
utero. In the CHILD cohort, we found that daily NNS
beverage consumption during pregnancy was associated
with a twofold higher risk of infant overweight at 1 year of
age [14]. Similar results were observed among older chil-
dren in the Danish National Birth Cohort [16]. Interestingly,
both studies observed stronger effects in males, although a
third study found no association in children of either sex
[21].

Limited evidence from animal studies also suggests that
NNS consumption during pregnancy and lactation may
predispose offspring to develop obesity and metabolic
syndrome [22]. However, most studies have used doses that
exceed the human acceptable daily intake (ADI), equivalent
to 20 packets of NNS or 12 cans of diet soda per day [13].
In mice, chronic lifetime exposure to NNS (55 mg/kg/day
aspartame; exceeding the ADI by 1.4-fold), commencing in
utero, has been associated with increased weight gain and
decreased insulin sensitivity in adulthood [23], but the
impact of maternal NNS intake was unclear because
exposure was maintained in the offspring after weaning. A
recent study found that maternal NNS intake (a combination
of sucralose and acesulfame-K at twofold ADI) altered the
microbiome and metabolism of young offspring and
reduced their body weight [24], although adiposity was not
assessed and the offspring were not followed after weaning.
Another study found that rats exposed to very high doses of
NNS (343 mg/kg/day aspartame; 8.6-fold ADI) during
gestation gain more weight and have altered lipid profiles
during adulthood [25], yet other studies reported no dif-
ference in weight gain following prenatal NNS exposure
[26]. Similarly, conflicting evidence from in vitro studies
suggests that NNS can either stimulate [27] or downregulate
[28, 29] adipocyte differentiation.

Overall there is a paucity of evidence from human and
experimental studies on the potential impact of prenatal
NNS exposure on the development of obesity and metabolic
health. Here, we extend our previous findings on maternal
NNS consumption and infant body composition in the
longitudinal CHILD cohort [14] by reassessing this rela-
tionship at 3 years of age. Further, we used experimental
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model systems to examine mechanisms in mice, using
physiologically relevant doses of aspartame and sucralose.
Finally, we characterized these mechanisms using an
in vitro model of adipocyte differentiation. The combination
of clinical and experimental findings provides new evidence
that maternal NNS consumption conditions obesity risk in
the offspring.

Methods
CHILD birth cohort

We accessed data from the observational CHILD Cohort
Study, a longitudinal pregnancy cohort study of 3455
families across four sites in Canada, enrolled between 2008
and 2012 [30]. This study was approved by the Human
Research Ethics Boards at the Hospital for Sick Children,
McMaster University and the Universities of Manitoba,
Alberta, and British Columbia. All mothers provided writ-
ten informed consent. For the current secondary analysis,
we included 2298 mother—child dyads with complete data
on maternal NNS consumption and child BMI at 3 years.
Maternal sweetened beverage consumption during preg-
nancy, total energy intake, and Healthy Eating Index were
documented in the CHILD study using a food frequency
questionnaire [31-34] during the second or (usually) third
trimester of pregnancy, as described previously [14] (Sup-
plementary Methods). NNS beverages included “diet soft
drinks or pop” (1 serving =12 o0z. or 1 can) and “artificial
sweetener added to tea or coffee” (1 serving = 1 packet). At
3 years of age, child height, weight, and subscapular skin
folds were measured by trained CHILD study staff fol-
lowing a standardized protocol. Age- and sex-specific z-
scores were calculated against the 2006 World Health
Organization reference. Child sex, birth weight, gestational
age, gestational diabetes, and maternal age were collected
from hospital records. Maternal BMI was calculated from
measured height and self-reported prepregnancy weight
[14]. Mothers reported their education, smoking, and
breastfeeding duration, and their child’s screen time (indi-
cator of physical inactivity) and fresh and frozen food
consumption (indicator of diet quality).

Experimental mouse model

All procedures were approved by the Animal Welfare
Committee of the University of Manitoba, which adheres to
the principles developed by the Canadian Council on Ani-
mal Care and the Council for International Organizations of
Medical Sciences. Male and female C57BL6J mice were
obtained and mated at 8 weeks. Dams were randomly
assigned to drinking water (control), sucrose (45 g/L,
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~7.2 g/kg body weight/day anticipating 4 mL. water intake,
and 25 g body weight), aspartame (0.2 g/L, ~32 mg/kg/day)
or sucralose (0.04 g/L., ~6.4 mg/kg/day) throughout preg-
nancy, and lactation (n = 6 females/litters per group). Based
on previous metabolic studies, this sample size is sufficient
to determine effects [35]. In a preliminary dose-finding
study, dams received low (0.05 g/L), medium (0.1 g/L), and
high (0.2 g/L) levels of aspartame (Table S6) or low (0.01 g/
L), medium (0.02g/L), and high levels (0.04 g/L) of
sucralose (Table S7). These NNS concentrations are rele-
vant to human consumption, translating to doses near or
below the ADI limits for humans (40 mg/kg for aspartame
and 5 mg/kg for sucralose). Dams delivered naturally and
when necessary, litters were reduced to eight pups (four
males and four females) to avoid competition for food.
Beginning at 3 weeks of age (the usual weaning age for
mice), offspring were fed regular chow and tap water.

Mouse offspring

Food and water intake and body weight were measured
weekly for all offspring. At 11 weeks, body composition of
mouse offspring was assessed by Dual-Energy X-ray
Absorptiometry (DEXA) by a technician blinded to the
offspring experimental groups. Glucose tolerance and
insulin tolerance were tested as described previously [35]
(Supplementary Methods). At 12 weeks, offspring were
euthanized by intraperitoneal injection of sodium pento-
barbital and blood was collected by cardiac puncture. Tis-
sues were dissected, rinsed in PBS, weighed, and either
fixed in 10% formalin or freeze clamped in liquid nitrogen
and stored at —80 °C. Histopathological preparations and
hematoxylin/eosin (HE) staining were performed according
to standard procedures. For the analysis of adipocyte size
and number, the internal diameters of 80 consecutive adi-
pocytes from two randomly selected fields on each HE
stained slide were measured under light microscopy at x20
magnification using a digital micrometer and averaged. For
all analyses, data from cage mates were averaged and the
litter was used as the unit of analysis.

Cell culture experiments

3T3-L1 pre-adipocyte cells were differentiated as
described previously [36]. Three separate cell prepara-
tions from American Type Culture Collection (Manassas,
Virginia) were used (passage 10) for differentiation and
each sample was performed with three technical repli-
cates. Two days post confluency (Day 0), the cells were
stimulated with 1 uM dexamethasone, 1pg/ml insulin,
and 0.5mM methylisobutyl-xanthine in Dulbecco’s
Modified Eagle’s Medium with 10% Fetal Bovine Serum

(FBS) (Sigma-Aldrich, Oakville, ON). Cells were fed
with fresh media every 2 days, with insulin and FBS on
Day 2 and FBS alone from Day 4 until Day 8.
Throughout adipocyte differentiation, 200 nM sucralose
was added at different stages of cellular development
(Fig. 4a) until Day 8. At Day 8, the cells reached full
differentiation and were collected for analysis. After
fixation with 10% formaldehyde for 2h at room tem-
perature, cells were washed with 60% isopropanol and
lipid accumulation was evaluated by oil red O staining for
1 h at room temperature followed by washing twice with
distilled water. An EVOS digital inverted microscope
(AMG, Bothel, WA) was used to capture 12 images for
every 100 mm plate, with seven pictures taken around the
outside and five taken around the center of the plate. The
image analyst was blinded to the identity of the cell
conditions.

Gene expression

RNA was isolated from tissues and cells using a QIAsh-
redder column and further purified using the RNeasy kit
(Qiagen, Valencia, CA). For qPCR analysis, cDNA was
synthesized using the Protoscript kit (NEB, Ipswich, MA).
The QuantiTect SYBR Green PCR kit (Qiagen) was used to
monitor amplification of cDNA on a CFX96 thermocycler
(Bio-Rad, Hercules, CA). Expression of genes was assessed
in duplicate using 2722 and data normalized by geometric
averaging of multiple control genes that were constant
across all groups of offspring [37], including eukaryotic
initiation factor 2a (elF2a) and cyclophilin A, using vali-
dated primer sequences (Table S9).

Statistical analyses

Statistical analyses are described in the Supplementary
Methods.

Results

Maternal NNS intake during pregnancy is associated
with higher BMI and adiposity in children

Building on our previous findings at 1 year of age in the
CHILD cohort [14], we reexamined the association of
maternal NNS consumption and child body composition at
3 years of age among 2298 mother—child dyads. During
pregnancy, 29.9% of mothers reported consuming any NNS
beverages and 5.2% consumed them daily (Table S1).
Consistent with our previous results, children born to
mothers reporting daily NNS beverage consumption had

SPRINGER NATURE
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Fig. 1 Maternal consumption A
of NNS-sweetened beverages

and child body mass index

(BMI) at 3 years of age in the

CHILD cohort. A Child BMI

z-score at 3 years according to

maternal NNS beverage

consumption during pregnancy.

Values are means + SEM. BMI

z-scores were calculated against

the World Health Organization

reference standard; a z-score of 0

indicates a normal “healthy”

BMI, a z-score of +1 indicates a

BMI 1 standard deviation higher

than normal. B Difference in

BMI z-score for highest

consumption group (21 beverage

per day) vs. no consumption. B
Values are unadjusted and
adjusted beta estimates and 95%
confidence intervals from
multiple linear regression
models (N’s for each model are
noted; see Table S2 for full
results). Lifestyle factors in
pregnancy and infancy include:
maternal total energy intake,
Healthy Eating Index score,
sugar-sweetened beverage
intake, postsecondary education,
smoking, and diabetes during
pregnancy; breastfeeding
duration; child sex. Lifestyle
factors in early childhood
include: screen time, fresh, and
frozen food intake (as an
indicator of diet quality) at 3
years. CI confidence intervals,
NN nonnutritive sweetener.

Maternal

significantly higher BMI at 3 years of age than children
born to mothers who did not consume NNS beverages
(mean BMI z-score 0.88 vs. 0.53; unadjusted difference:
0.37, 95% CI 0.19-0.55). This difference was reduced after
adjusting for potential confounders including maternal BMI
and lifestyle factors in pregnancy (diabetes, smoking, and
overall diet quality), infancy (breastfeeding duration), and
early life (child diet quality and screen time) (adjusted
difference: 0.18, 95% CI —0.03, 0.40) (Fig. 1 and Table
S2). No sex differences were observed (not shown), and
results were similar for the adiposity outcome of sub-
scapular skin folds (Table S3). Together, these results
suggest that maternal NNS consumption during pregnancy
may promote excessive weight gain or adiposity in off-
spring, although confounding by maternal BMI and lifestyle
factors appears to partially explain this relationship. To
eliminate the possibility of confounding, determine caus-
ality, and investigate biological mechanisms, we undertook
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mechanistic studies exposing pregnant mice and cultured
adipoctyes to NNS at doses relevant to human consumption.

Sucrose and NNS variably impact weight gain and
energy intake in pregnant mice

Although not statistically significant, pregnant mice
receiving sucrose in their drinking water weighed more
than control dams at e—18.5 (Table S4). Dams receiving
sucrose consumed more sweetened water and more food,
thus their average daily energy intake was ~1.4-fold
greater than controls (Table S4; p < 0.01). Dams receiving
aspartame or sucralose increased their food intake by a
lesser degree (1.1- and 1.2-fold, respectively; p <0.01),
but their body weight was not affected. Notably, maternal
sucrose and aspartame consumption increased the number
of pups in the litters (Table S4; p < 0.01) whereas sucralose
did not significantly affect the litter size.
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Fig. 2 Body composition in
male and female mouse
offspring of dams fed sucrose,
aspartame or sucralose during
pregnancy and lactation. Body
weight trajectory of (A) male
and (B) female offspring;

C Percent body fat of male and
female offspring at 11 weeks of
age; D pWAT and gWAT 1
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Representative images of H&E 4
stained sections of pWAT
adipocytes at x20 magnification;
F Adipocyte diameter, values
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p values represent significance
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ANOVA with Bonferroni post
hoc tests: #p <0.05 between
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offspring of sucrose-fed dams
vs. the offspring of control,
aspartame- and sucralose-fed
dams. p values represent
significance after one-way
ANOVA with Bonferroni post
hoc tests: *p <0.05 vs. offspring
of control dams, §p <0.05 vs.
offspring of sucrose-fed dams
and Tp <0.05 vs. offspring of
aspartame-fed dams. pWAT
perirenal white adipose tissue,
gWAT gonadal white adipose
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Maternal NNS intake has sex-specific effects on
adiposity in mouse offspring

Next, we investigated the influence of maternal NNS intake
on weight gain in male and female mouse offspring. Maternal
sucrose, aspartame and sucralose consumption all conditioned
increased body weight in male offspring by 7 weeks of age
compared with the male offspring of control dams (Fig. 2a; all
p <0.001). The elevated body weight in these male offspring
persisted until sacrifice at 11 weeks of age. Conversely in
female offspring, only maternal sucrose consumption (not
aspartame or sucralose) induced elevated body weight at 10
and 11 weeks of age (Fig. 2b; p <0.05). Interestingly, the
elevated body weight did not appear to be due to differences
in energy intake because average daily food intake was
similar across all offspring groups (Table S5).

To determine whether increased body weight was related
to alterations in lean and/or fat mass in the offspring, we

* ok k
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l I
T

T
Female pWAT gWAT

Il Control
Sucrose

Bl Aspartame
Bl Sucralose

-n

Adipocyte Diameter (pm)
N
o
L

performed dual-energy X-ray absorptiometry (DXA). This
analysis showed that maternal sucrose, aspartame, and
sucralose all markedly increase the percent body fat (50%,
47%, and 15% increases, respectively) in male offspring,
compared to controls (Fig. 2c; p < 0.0001). Maternal sucrose
and aspartame also increased the percent body fat in female
offspring (Fig. 2c; p < 0.05); however, sucralose had no effect
on percent body fat in females. Consistent with these obser-
vations, maternal consumption of sucrose, aspartame, and
sucralose all increased the weight of perirenal white adipose
tissue (pWAT) and gonadal white adipose tissue (gWAT) fat
pads of the male offspring, compared with controls (Fig. 2d;
p <0.05). Notably, the effect of sucralose was dose depen-
dent, as lower levels of sucralose administration to dams did
not induce elevated body weight and fat pad mass in offspring
(Tables S7 and S8). H&E staining of perirenal adipose tissue
(Fig. 2e) revealed that maternal aspartame and sucralose
consumption increased the mean adipocyte diameter of the
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Fig. 3 Glucose tolerance and insulin sensitivity in 10-week-old
male and female mouse offspring of dams fed sucrose, aspartame
or sucralose during pregnancy and lactation. A GTT (left) and area
under the curve (right) in male offspring; B GTT and area under the
curve in female offspring; C ITT and area under the curve in male
offspring; D ITT and area under the curve in female offspring. GTT
glucose tolerance test, ITT insulin tolerance test. Values represent the
mean + SEM, n=6. p values represent significance after one-way
ANOVA with Bonferroni post hoc tests: *p <0.05 vs. control off-
spring. No significant differences were observed in Bonferroni post
hoc testing at each time point whereas some differences were detected
in the overall area under the curve.

male offspring by 22% and 30%, respectively (Fig. 2f, p <
0.05). Adipose tissue was the only major organ system that
increased in weight; the liver, heart, kidney, and spleen of the
offspring were generally similar between all groups (Table
S8). One notable exception was increased liver mass in
female offspring of sucrose-fed dams (Table S8).

Maternal NNS intake has sex-specific effects on
insulin sensitivity in mouse offspring

Next, since maternal NNS consumption increased body fat
accumulation in offspring, we examined whether glucose
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tolerance and insulin sensitivity were also affected (Fig. 3).
In cross-sectional analyses, these measures did not differ
between groups at any individual time point during the
120 min challenge. However, using the area under the curve
to assess overall glucose tolerance and insulin sensitivity
throughout the whole challenge, we found that maternal
sucrose consumption induced significant glucose intoler-
ance in female offspring, while maternal aspartame and
sucralose consumption had no effect (Fig. 3b). Glucose
tolerance was similar in all groups of male offspring (Fig.
3a). By contrast, insulin tolerance tests revealed that the
male offspring of sucrose, aspartame, and sucralose-fed
dams were more insulin resistant than the male offspring of
control dams (Fig. 3c), whereas insulin sensitivity of the
female offspring was similar across all groups (Fig. 3d).

Sucralose has pro-adipogenic effects on 3T3-L1 pre-
adipocytes in vitro

Since maternal NNS influenced body fat accumulation in
male mouse offspring, and early life is a critical stage that
determines stem cell fate, we examined the effects of
sucralose in cultured cells using the well-established male
3T3-L1 pre-adipocyte cell line. Previous research has
shown that aspartame affects lipid accumulation and adi-
pocyte differentiation in 3T3-L1 cells [29]. Therefore, we
examined the stage(s) of adipocyte differentiation affected
by sucralose. The 3T3-L1 adipocytes were incubated with
induction medium in the presence or absence of sucralose
(200nM) for the indicated periods of time (illustrated in
Fig. 4a). As expected, control cells incubated with induction
medium for 8 days differentiated into adipocytes, with lipid
accumulation visualized by oil red staining (Fig. 4b). Cells
treated with sucralose from dO to d2 (treatment b, modeling
germline exposure) or d0 to d8 (treatment e, throughout
differentiation) exhibited the highest accumulation of lipid
(Fig. 4b). Of note, lipid accumulation was not significantly
affected by sucralose treatment in other time windows,
including d2—-d4 (treatment c, modeling fetal exposure) or
d4—d8 (treatment d, modeling postnatal exposure) (Fig. 4b).
These results collectively suggest that sucralose adminis-
tration enhances adipogenesis at an early phase of differ-
entiation, consistent with the effects of prenatal NNS
exposure on body fat accumulation observed in mice (Fig.
2) and 3-year-old participants in the CHILD study (Fig. 1).

Sucralose stimulates pro-adipogenic regulators and
enzymes in vitro and in vivo

Since adipocyte differentiation is a complex process that
can be modulated by multiple stimuli including transcrip-
tion factors, we examined how sucralose affected the gene
expression of regulators of the adipocyte phenotype.
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Fig. 4 Effect of sucralose on 3T3-L1 adipocyte differentiation
in vitro. A Schematic outline of the experimental design: double-
headed arrows indicate the length of treatment. 3T3-L1 cells were
treated with 200 nM sucralose for the indicated periods of time. B Oil
red O staining to measure cellular lipid content assessed 8 days fol-
lowing induction of 3T3-L1 pre-adipocyte differentiation with

The addition of sucralose to the culture media from d0 to d8
(treatment d) induced a small but significant increase in the
expression of the peroxisomal proliferator activated receptor
(PPAR)-y transcription factor at d8 of adipocyte differ-
entiation (Pparg; Fig. 5a). On the other hand, the addition
of sucralose earlier in the adipocyte differentiation program
as well as throughout (treatments b and d), induced marked
increases in the expression of the adipogenesis-dependent
transcription factor, CCAT enhancer binding protein (C/
EBP)-a by d8 of adipocyte differentiation (Cebpa; Fig. 5b).
Moreover, the addition of sucralose to the media at the early
stages of differentiation (treatments a and b) as well as
throughout (treatment d), induced 1.5-2-fold increases in
the mRNA expression of the adipocyte marker genes, adi-
ponectin (Adipog; Fig. 5c) and fatty acid binding protein
(Fabp4; Fig. 5d). Consistent with these findings, sucralose
also increased the expression of the lipid droplet coat pro-
tein, perilipin (Plin2; Fig. Se). Sucralose did not affect the
expression of the adipogenesis inhibitory factor, Pref-1
(Fig. 51), suggesting that most of the effects of sucralose are
driven by promoting adipogenesis rather than removing
factors that maintain the undifferentiated state. Overall,
treatment of the cells with sucralose at earlier stages of
adipocyte differentiation (treatments a, b and d) had

Control Q@

induction medium containing MDI, insulin, and fetal bovine serum in
the presence or absence of 200nM sucralose. C Quantification of
cellular lipid content. Values represent the mean + SEM of data from
three independent experiments with three replicates. p values represent
significance after one-way ANOVA with Bonferroni post hoc tests:
*p <0.05 vs. control (no sucralose treatment).

remarkable effects on regulators of the adipocyte phenotype
whereas treatment of the cells with sucralose at later stages
(treatment c¢) had no effect.

Next, we examined whether sucralose also impacted the
expression of genes encoding metabolic enzymes involved
in fat storage and mobilization during adipocyte differ-
entiation. Indeed, sucralose administration early in the adi-
pocyte differentiation program increased the expression of
fatty acid synthase (Fasn; Fig. 5g) as well as glycerol
phosphate acyltransferase (Gpam; Fig. Sh). Sucralose also
significantly increased the expression of hormone sensitive
lipase (Lipe; Fig. 5i) and adipose tissue triglyceride lipase
(Argl; Fig. 5j). These findings suggest that sucralose pro-
motes fatty acid and triacylglycerol synthesis as well as its
mobilization in differentiating 3T3-L1 adipocytes.

Finally, we assessed whether maternal sucralose con-
sumption also affected the expression of several of these
genes in the pWAT of male mouse offspring. Interestingly,
in the offspring of sucralose-fed dams, as well as sucrose-
fed and aspartame-fed dams, a ~1.5-fold increase in Cebpa
and Fabp4 mRNA expression in pWAT was observed
compared with the offspring of control dams (Fig. 6a, b). In
addition, sucralose (but not sucrose or aspartame) increased
Fasn and Gpam mRNA expression ~7-fold and ~3-fold,
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Fig. 5 Sucralose increases the
expression of pro-adipogenic
regulators, fat storage, and
mobilization genes in 3T3-L1
cells in vitro. A PPAR-y gene
expression, B Cebpa

gene expression, and C Adipog
gene expression. D Fabp4 gene
expression, E Plinl gene
expression, and F Prefl]

gene expression. G Fasn gene
expression, H Gpam gene
expression, I Lipe gene
expression, and J Azgl

gene expression. Values
represent the mean + SEM of
data from three independent
experiments with three
replicates. qPCR gene
expression is relative to the
geomean of Eif2a and CycA and
normalized the control group. p
values represent significance
after two-way ANOVA with
Bonferroni post hoc tests: *p <
0.05 vs. control (no sucralose
treatment), #p <0.05 vs. b, §p <
0.05 vs. ¢, 1p<0.05 vs. d.
Treatments a, b, ¢, d refer to the
sucralose treatments depicted in
Fig 4a: a = sucralose on days
0-2, b = days 24, ¢ = days
4-8, d = days 0-8.
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Fig. 6 Sucralose increases the expression of pro-adipogenic reg-
ulators and fat storage and mobilization genes in mouse offspring
adipose tissue in vivo. A Cebpa gene expression, B Fabp4 gene
expression, and C Fasn gene expression. D Gpam gene expression.
Values represent the mean +SEM, n=6. qPCR gene expression is
relative to the geomean of Eif2a and CycA and normalized to the
control group. p values represent significance after one-way ANOVA
with Bonferroni post hoc tests: *p <0.05 vs. control offspring dams,
8 <0.05 vs. offspring of sucrose dams, Ip<0.05 vs. offspring of
aspartame dams.

respectively, compared with the offspring of control dams
(Fig. 6c, d).

Discussion

Our study provides new evidence on the potential adverse
effects of NNS, which are typically marketed as “healthier”
alternatives to caloric sweeteners, especially for the pur-
poses of weight management and diabetes control. Given
that maternal obesity and gestational diabetes are on the rise
[38], NNS may be especially appealing to pregnant women,
yet very few studies have explored the long-term impact of
NNS exposure in utero. Here, we used a translational
approach to triangulate evidence from a human cohort, a
mouse model, and cell culture experiments to show that
prenatal NNS exposure influences adipocyte differentiation,
fat mass accumulation, and adiposity in offspring.

In the prospective CHILD cohort, we found that children
born to mothers who regularly consumed NNS-sweetened
beverages had higher BMI and adiposity by 3 years of age.
This association was partially explained by differences in
maternal BMI and other confounders, which cannot be fully
disentangled in an observational study. Thus, to establish
causality and investigate biological mechanisms, we under-
took experiments in mice, finding that offspring exposed to
NNS in utero had increased adiposity compared to controls,
consistent with our observation in the CHILD cohort.

Our results add to an emerging body evidence from
rodent studies examining early-life NNS exposure. Collison
et al. [23] showed that exposing mice to aspartame in utero
and throughout life (55 mg/kg/day, 1.4-fold ADI) resulted
in increased body weight, visceral fat deposition, and fast-
ing glucose levels, while von Poser Toigo et al. [25] found
that male rat offspring exposed to high levels of aspartame
(343 mg/kg/day, 8.6-fold ADI) during gestation had
increased weight gain. In contrast, Olivier-Van Stichelen
et al. found that maternal NNS throughout pregnancy and
lactation either had no impact (for sucralose combined with
acesulfame-K at levels approximating the ADI) or reduced
offspring body weight (for higher doses of ~2-fold ADI)
[24], although adiposity was not measured and the offspring
were not followed beyond weaning. Here, we separately
assessed physiologically relevant doses of aspartame and
sucralose consumption. We showed that exposures
approximating the human ADI of these NNSs during
pregnancy and lactation increased body weight in male
offspring, primarily due to an increase in their adiposity.
Interestingly, and similar to sex-specific findings by Colli-
son et al. [23], female offspring did not experience these
effects. These findings are also consistent with sex differ-
ences observed in the CHILD infants at 1 year of age [14],
although not replicated in our current analysis at 3 years of
age. Further research is needed to understand the potentially
sex-specific effects of NNS during critical periods of
development.

We also uniquely evaluated the impact of maternal NNS
intake on glucose and insulin tolerance in the offspring.
Previously, Collison et al. found that exposure to 55 mg/kg/
day of aspartame throughout gestation and postnatally
increased fasting blood glucose levels in both male and
female offspring and decreased insulin sensitivity in male
offspring only [23]. While we did not detect differences in
fasting blood glucose in NNS-exposed offspring, we did
observe greater insulin resistance in the male offspring,
which was consistent with their obesity. Since insulin
resistance typically precedes the development of glucose
intolerance and hyperglycemia, it is possible that these
phenotypes could develop with advanced age or the addi-
tion of a high calorie diet.

Finally, we used a cell culture model of adipocyte dif-
ferentiation to further explore the mechanisms of NNS-
induced adiposity observed in the CHILD cohort and mouse
offspring. Previously it was reported that saccharine and
aspartame affected adipocyte differentiation and lipid
metabolism [27-29], but these studies used extremely high
millimolar dosages. Since we observed the greatest effects
of sucralose on male mouse offspring, we treated male 3T3-
L1 pre-adipocyte cells with 200 nM sucralose at different
stages of the differentiation process. We found that sucra-
lose exposure very early in the differentiation program had
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the greatest effect on increasing lipid accumulation within
the cells. In addition, this treatment increased the expression
of several transcription factors that convert pre-adipocytes
into adipocytes and have key roles in the regulation of lipid
and glucose metabolism by adipocytes [39]. These include
PPAR-y and C/EBP-a, as well their downstream target
genes Adipoq, Fabp4, and Plin2. Moreover, sucralose sti-
mulated the expression of several genes involved in lipid
metabolism, including Fasn, Gpam, Lipe, and Atgl.
Importantly, we confirmed that these changes in gene
expression were also present in adipose tissues isolated
from male offspring exposed to sucralose in utero. Toge-
ther, these findings suggest that sucralose can directly
induce a pro-adipogenic gene expression program at doses
that approximate human consumption.

The major strength of this study is our translational
approach. We used data from a large, longitudinal national
birth cohort that collected objective measures of body
composition and accounted for many possible confounders.
We performed complementary mechanistic studies in mice
and cultured adipocytes, and assessed two different NNS at
physiologically relevant doses. Limitations of the CHILD
cohort study include the limited assessment of NNS in
beverages during pregnancy, without details on NNS con-
sumption during lactation, type of NNS, or NNS in foods,
which are an increasingly common source of NNS expo-
sure. As in all observational studies, residual confounding is
also possible, although we accounted for key factors
including maternal BMI, diabetes, and diet quality. To
overcome these limitations, we used experimental models to
address causality and examine mechanisms. A limitation of
our mouse study is that we did not separate the effects of
NNS during pregnancy and lactation. A limitation of our
adipocyte differentiation study is that although we used a
dose that is relevant to human consumption, sucralose is not
fully absorbed from the gut [40]; therefore, the dose we
applied to our cell culture system might be higher than what
is achieved in vivo. However, our in vitro results were
confirmed in mouse adipose tissue, demonstrating the
compatibility of these model systems. Overall, our findings
from the CHILD cohort and the experimental model sys-
tems are complementary and provide new insights into the
biological impact of prenatal NNS exposure.

Further research is needed to confirm and characterize the
potentially sex-specific biological mechanisms by which
prenatal NNS exposure influences postnatal weight gain and
adiposity. In addition to stimulating adipocyte differentiation,
NNS may alter the maternal microbiome [41, 42], which is
transmitted to the offspring during birth and postnatal inter-
actions [43, 44], and contributes to host metabolism and
weight gain [45-47]. Future studies should also assess other
types and sources of NNS, such as plant-derived NNS and
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NNS in foods, and distinguish between NNS exposure during
pregnancy versus lactation. Finally, it will be important to
study and model the maternal conditions that motivate NNS
use, notably obesity and gestational diabetes, to clearly
establish and disentangle their independent effects on off-
spring development. This research will be important for
establishing the long-term safety of prenatal NNS exposure
and informing recommendations for pregnant women.

In summary, our translational research provides new
evidence that exposure to NNS in utero stimulates postnatal
weight gain, insulin resistance, and adiposity. Associations
observed in the CHILD cohort were investigated in
experimental model systems, revealing a previously
unknown mechanism involving altered expression of pro-
adipogenic (e.g., Cebpa) and lipid metabolism genes (e.g.,
Gpam, Fasn). Collectively, these results suggest that
maternal NNS consumption is a modifiable obesogenic
exposure that may be contributing to the global obesity
epidemic, and call for further research on the long-term
metabolic effects of NNS exposure in early life.
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